Identities of Associative Algebras

نویسنده

  • Alexander R. Kemer
چکیده

The structure theory for Pi-algebras is well developed. Some results of this theory are classic now. One of them is Kaplansky's theorem which asserts that a primitive Pi-algebra is finite dimensional over its centre. Another example is the theorem of Nagata-Higman which asserts that any algebra over a field of zero characteristic satisfying identity x" = 0 is nilpotent. In 1957 A.I. Shirshov proved his famous Height Theorem:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperidentities in Associative Graph Algebras

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ ...

متن کامل

Polynomial Identities for Tangent Algebras of Monoassociative Loops

We introduce degree n Sabinin algebras, which are defined by the polynomial identities up to degree n in a Sabinin algebra. Degree 4 Sabinin algebras can be characterized by the polynomial identities satisfied by the commutator, associator and two quaternators in the free nonassociative algebra. We consider these operations in a free power associative algebra and show that one of the quaternato...

متن کامل

Algebras, Dialgebras, and Polynomial Identities *

This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting oper...

متن کامل

Special Identities for Quasi-jordan Algebras

Semispecial quasi-Jordan algebras (also called Jordan dialgebras) are defined by the polynomial identities a(bc) = a(cb), (ba)a = (ba)a, (b, a, c) = 2(b, a, c)a. These identities are satisfied by the product ab = a a b + b ` a in an associative dialgebra. We use computer algebra to show that every identity for this product in degree ≤ 7 is a consequence of the three identities in degree ≤ 4, bu...

متن کامل

Ternary analogues of Lie and Malcev algebras

We consider two analogues of associativity for ternary algebras: total and partial associativity. Using the corresponding ternary associators, we define ternary analogues of alternative and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc − acb − bac + bca + cab − cba (the ternary analogue of the Lie bracket) defines a structure of an anticommutative ternary al...

متن کامل

Ultra and Involution Ideals in $BCK$-algebras

In this paper, we define the notions of ultra and involution ideals in $BCK$-algebras. Then we get the relation among them and other ideals as (positive) implicative, associative, commutative and prime ideals. Specially, we show that in a bounded implicative $BCK$-algebra, any involution ideal is a positive implicative ideal and in a bounded positive implicative lower $BCK$-semilattice, the not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010